

Massimo Panarotto, Chalmers University of Technology

New disruptive concepts, both

- in the technology
- in the mision/business domain

However, the comparison between these radical concepts is difficult today, (due to **different parameters, scales and governing logics** among the alternatives).

A web-based tool to conduct cost-benefit analysis of design and business alternatives within the electric propulsion business.

The use of the tool is demonstrated in a case study related to hall effect thrusters for geostationary communication and LEO megaconstellations.

🛞 Club Design		ədmin -
VCS Life Cycle Design Connect	Design to VCS External Factors Surplus Value Simulation	
Value Creation Strategy		
Select AL X V		
Design Group		
Select All X X V		
Settings		
Rensimulation		
	· / /	
	200	
	1 dente	
	-2 000	

The results point at the **flexibility of the tool** to run extensive and **automated digital experiments for both mission/ business and design**, fostering collaborative decision making between business and engineering.

Sources of figures:

- Holste, K., Dietz, P., Scharmann, S., Keil, K., Henning, T., Zschätzsch, D., ... & Klar, P. J. (2020). Ion thrusters for electric propulsion: Scientific issues developing a niche technology into a game changer. Review of Scientific Instruments, 91(6), 061101.
- 2) https://www.esa.int/ESA_Multimedia/Images/2019/11/Mega -constellation_coverage

Massimo Panarotto, Chalmers University of Technology

expectations **as** expressed by the stakeholders. Stakeholder expectations can be of any format, granularity or detail

List of lifecycle processes, adapting **ISO 15288 standard.** This link is what will enable the cost/benefit simulation

SAFRAN

AEROSPAZIO

bradford

space

alue Creation Stra	tegies		Edit VCS						
GEO Business	ess CEO Business 2023 - 2035							Export ~	Duplicate VCS Edit
EO Mission 1			PROCESS	STAKEHOLDER	STAKEHOLDER EXPECTATIONS	STAKEHOLDER NEEDS	RANK WEIGHT	VALUE DIMENSIONS	VALUE DRIVERS
EO Mission 2 EO Mission 3 + Create V	vcs		Architectural design	SUB-SYSTEM MANUFACTURER	Reduce the time necessary to develop the product. A high performance product taking 5 years to develop starting in 2018 will miss market opportunities in 2020. While an average performance product taking 2 years to develop starting in 2018 may conquer the market in 2020.	Reduced Development lead time including Qualification		Lead Time	VD Reduce System Complexity [#]
			Manufacturing (Implementation)	INTEGRATORS	Ensure the highest level of production readinass. Hence suppliers expect manufacturing processes to be repeatable, key materials and components available, and the product manufacturable in a production environment by someone without a PhD.	Reduced product cost	15%	Product Cost	VD Reduce Product Cost [k€]
			Launch (Operation)	OPERATORS	Operators expect to reduce the capital expenditure (Capex) of their satellites/systems. A big portion of the Capex is the sum of three components: 1) cost of the satellite platform 2) insurance costs and 3) interest on capital	Reduced Launch Mass	24%	Launch Mass	VD Reduce EP Dry Mass [kg] VD Increase Isp [sec]
			Orbit Raising (Operation)	OPERATORS	Ensure quick enter of the satellite in the orbit of operation, reducing the risk of a loss of income due to delays .	Reduced transfer time during orbit raising	21%	Transfer Time	VD Increase Thrust [N] VD Increase number of firing thrusters [#]
			Station Keeping (Operation)	OPERATORS	Operators expect to reduce the capital expenditure (Capex) of their satellites/systems. A big portion of the Capex is the sum of three components: 1) cost of the satellite platform 2) insurance costs and 3) interest on capital	Maintain product reliability and robustness	27%	Product reliability	VD Maintain Product Reliability [#]

CNrs

ThalesAlenía

a Thales / Leonardo company Space

CHALMERS

IVERSITY OF TECHNOLOGY

1. Define Value Creation Strategy

A Value Creation Strategy (VCS) is a **set of rank-weighted Needs** that have to be satisfied. Changing the needs will allow us to define a **new business scenario/mission**. No design is created yet.

Value drivers: What engineering aspects impact this need that you can control during design?

SMF**4**SPA

Universidad

Carlos III

de Madrid

uc3m

Massimo Panarotto, Chalmers University of Technology

2. Create Designs

From the VCS view, a design table is created automatically.

The values for the different alternatives can be set manually, or can be imported from Excel if simulations have been run with other tools.

SAFRAN

AEROSPAZIO

🔘 Club Desian MassimoPanarotte VCS Life Cycle Design Connect Design to VCS External Factors Surplus Value Simulation esign groups Edit Designs Design group: Electric Propusion Alternatives Swap headers Export lectric Propusion Alternatives Value Drivers Designs 0.98 Design1 180 300 Design2 2500 Design3

CNrS

ThalesAlenia

a Thailes / Leonardo company Space

CHALMERS

IVERSITY OF TECHNOLOGY

bradford

sdace

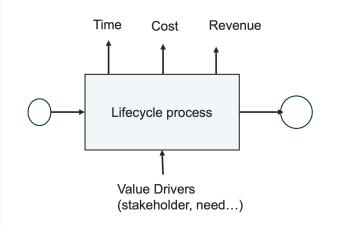
More radical designs can be created and analysed (through the create new design group function).

Universidad

Carlos III

de Madrid

uc3m



Massimo Panarotto, Chalmers University of Technology

For each pair of mission and design, a set of relationships between the value drivers and the time, cost and revenue for each process can be defined

This link is what will enable the cost/benefit simulation

3. Connect Design to VCS

💿 Club Design				MassimoPanarotto 🝷
VCS Life Cycle Design Connect [Design to VCS External Factors Sur	plus Value Simulation		
Value Creation Strategy GEO Business	Connect design to VC GEO Business 2023 - 2035 Electric			Edit
Design group	PROCESS	DIRECT INPUT / FORMULA EDITOR		UNIT
Electric Propusion Alternatives \mid 🗸				
Show pairs	 Architectural design 	Time: 0.1 · VD(System Complexity [#]) ^{0.5} Cost: 100 · VD(System Complexity [#]) ^{0.5}	Per year [EURO]	Total Sum
		Revenue: 0	[EURO]	
		Time: 1	Per year	
	 Manufacturing (Implementation) 	Cost: $VD(Product Cost [ke])$	[EURO]	Per Product
		Revenue: 0	[EURO]	
		Time: 0.1	Per year	
	 Launch (Operation) 	$\begin{array}{c} \text{Cost:} \text{VD}(\text{EP Dry Mass} [kg]) \frac{10000 \cdot 1000}{\text{VD}(\text{Isp} [\text{sec}])} \end{array}$	[EURO]	Per Product
		Revenue: 0	[EURO]	
		$\frac{\text{VD}(\text{Launch Mass} [lg]) - \left(\frac{\text{VD}(\text{Propulation Mass OII $lgc]}}{\text{VD}(\text{Number of firing throasters } \#) \text{VD}(\text{Throast } [N])} - \frac{365}{365}$	Per year	
	Orbit Raising (Operation)	Cost: 100 · TIME	[EURO]	Per Product

Massimo Panarotto, Chalmers University of Technology

the model optimizes the combined profit of the customer, the manufacturer and eventual suppliers (i.e. the combined profit of an imaginary corporation that performs all three roles).

the simulation allows to understand the impact of the design alternatives on the **cost-revenue profiles over time for each mission.**

AEROSPAZIO

SAFRAN

4. Run Surplus Value Simulation

CHALMERS

ERSITY OF TECHNOLOGY

bradford

space

the simulation allows to confirm or disconfirm the initial rank-weight set in the value creation strategy (e.g. in the trade-off among thrust and lsp)

Option 3 is the one that allows to generate higher revenues, due to its high thrust (earlier enter in orbit) and relatively low mass). However, the pay back is longer due to its higher complexity (a more innovative and risky concept).

