Model-based approach for the automatic inclusion of production considerations in the conceptual design of aircraft structures

A M R M Bruggeman, D Bansal, G La Rocca (TU Delft)

T van der Laan and T van den Berg (GKN Fokker Aerostructures)

Presenter:

D Bansal

Overview

Introduction: Importance of production considerations in conceptual design

Current methodologies to include production in design and the limitations thereof

Proposed methodology: the Manufacturing Information Model

Industrial case study: Conceptual design of a wingbox

Conclusions

Recommendations for future work

Introduction: Importance of production considerations in conceptual design

Production considerations

"factors from the perspective of production, that have an influence on the system design"

Examples:

× ×

× 📲

Design

Picture sources

Current methodologies to include production in design and the limitations thereof

Production considerations in conceptual aircraft design

Automated inclusion

Manual inclusion

Fokker

Current methodologies to include production in design and the limitations thereof

TUDelft

Current methodologies to include production in design and the limitations thereof

AGILE^{4.0} DEFAINE

Current methodologies to include production in design and the limitations thereof

3. Use of commercial software unsuitable for automation / conceptual design

assembly not considered together GKN AEROSPACE

AGILE^{4.0} DEFAINE

	Package	Solutions developed in this research	Documents
	MIM Manufacturing Information Model	 ⇒ <u>Model based approach</u> over <documents, experience,="" meetings=""></documents,> ⇒ Suitable for automation / conceptual design ⇒ Faster; enables knowledge reuse ⇒ MIM <u>integrates with KBE applications</u> to capture production information & allow related analyses 	Digital models
	manufacturing model	 ⇒ Captures manufacturing information for each product component ⇒ <u>Generic</u>: independent of design type, manufacturing method, material etc. ⇒ <u>Enables analyses</u>: Compatibility, mass 	
	database	 ⇒ Provides information to define manufacturing model ⇒ Generic: extension possible to include new design types, manufacturing methods, materials etc. 	
ŤU De	assembly model	 ⇒ Captures assembly sequence information for a product ⇒ Assembly + manufacturing together ⇒ Enables analyses: Production rate 	

Assembly model

Operation

Execution of manufacturing process(es) that result

in materialisation of a manufactured primitive

Station

A physical location where a set of manufacturing operations take place

MIM has been implemented using:

Knowledge Based Engineering Software

KBE features

- Runtime catching
- Dependency tracking
- Demand-driven evaluation

Sources: https://www.parapy.nl/ (accessed 25 August 2022) https://networkx.org/ (accessed 25 August 2022)

Part primitives:

- skin panels x 2
- stringers x 10
- ribs x 12
- spars x 2

Joint primitives:

- skin-stringer joints
- skin-rib joints
- skin-spar joints
- rib-spar joints

2. Manufacturing model DOE

Design variables

/an der Laan, Ton, and Tobie van den Berg, "An open source part cost estimation tool for MDO purposes." AIAA AVIATION 2021

<u>Results</u>: Scatter plot of all valid* design points

*pass compatibility checks

19

2. Manufacturing model DOE

<u>Results</u>: Valid design points based on the joining method

2. Manufacturing model DOE

<u>Results</u>: Valid design points based on the <u>part material</u>

Conclusions

1. The MIM allows for identification of trends, and to rank different manufacturing concepts based on the imposed requirements, which helps in making trade-off decisions

Conclusions

2. The MIM provides a generic structure to capture and organise production related information in a product system

Conclusions

3. The MIM provides a <u>single source for all production information</u> for each manufactured primitive in a product model

TUDelft

This enables easy integration of related analysis tools:

- Cost
- Mass
- □ Compatibility
- Production rate

Recommendations for future work

Sequential design workflow:

Possibility of missing out on good designs based on choices at previous steps(s)

Thank you for your attention

The research presented in this paper has partially been performed in the framework of the AGILE 4.0 (Towards Cyber-physical Collaborative Aircraft Development) and DEFAINE (Design Exploration Framework based on AI for froNt-loaded Engineering) projects and has received funding from the European Union programs Horizon 2020 (grant agreement n815112) and ITEA 3 Call 6 project 19009.

www.defaine.eu

www.agile4.eu

