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Abstract  
The DEFAINE project proposes companies to adopt a front-loaded development process. Front-loading 

significantly reduces the inefficiencies of the current engineering approach by enabling large-scale 

design exploration early on or even before the start of a project.  To this purpose, the DEFAINE 

framework enables fast generation of distributed, re-configurable multidisciplinary engineering 

workflows, built on sets of design automation solutions, largely based on Knowledge Based 

Engineering. The workflows are fed with varying sets of parameters and requirements, to automatically 

perform multiple design exploration studies. With the help of AI techniques, the produced design 

solutions are analyzed to derive new knowledge.  

1. Introduction 

The demand for air transportation has been increasing dramatically. It is forecasted to grow by 50% in the next 15 

years [1]. How to satisfy such demand, while dealing with the current (almost) saturated infrastructure and the 

increasingly stringent environmental constraints is the ultimate challenge. The European goals to reduce the emission 

levels of noise, CO2 and NOX by 65, 75 and 90% respectively, by 2050 [2] are extremely ambitious and hardly realistic 

when considering the high technological level already achieved within existing aircraft combined with the often-

conservative approach of aircraft manufacturers. Whether and to what extent it is possible to improve the performance 

of existing aeronautical systems and how to assess the actual value of novel solutions and lower their development risk 

are key questions for industry, research institutes and academia. 

 

To increase the technological level of existing aircraft even further, a radically different product development process 

is necessary to enable a larger exploration of the design space, enhance designer’s productivity and integrate knowledge 

and capabilities that are distributed within the company and across the supply chain. In the effort to maintain and 

extend industrial leadership, modern organizations have already started to significantly alter the nature of their 

engineering processes, for example moving from the old sequential development process to concurrent engineering. 

Although nowadays different development phases run concurrently and parts of the process have been digitized, within 

conceptual development the possibilities to perform full in-depth analysis of design cases within the available time are 

still limited. The process nowadays features the following bottlenecks: 

 

• Limited availability and incompleteness of data, information, and limited reuse of existing solutions 

Although design decisions in the early stages of the process often have the largest impact on product 

performance, due to the nature of the concurrent design process these are often based on limited data and 

information. This data and information is incomplete and prone to change in the course of the process. Next 

to this, information from previous projects is often not readily available for conceptual design teams and its 

meta-information is not saved adequately. Both the incompleteness and volatility of data as well as limited 

reuse of existing solutions impede product optimization and often results in costly incorporation of changes 

late in process. 
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• Difficult to assess effects of design decisions 

In the current process, it is very difficult to completely grasp the effect of design decisions whereas this spans 

multiple teams and disciplines, each involving many detailed analyses and dedicated software tools. This 

effect is present within companies between disciplinary teams but is even more profound in case of multiple 

companies working together in a supply chain. Further limited by time constraints within the process, in 

combination with constant changes to which the design is subjected to, it is difficult to assess and make 

optimal design decisions. 

• Inadequate traceability of requirements 

Due to the often-occurring changes in requirements, the main challenge in product design is to choose a design 

concept having certain robustness in responding to these changes without having significant impact on the 

business case parameters (e.g. certification measures, cost & weight factors). However, the proper traceability 

of requirements is hampered by a lack of adequate tools and methods to support their management and 

tracking. Other challenges in the handling of needs and requirements within conceptual design are that they 

are not known yet from the start and that the lack of traceability limits engineers in understanding how 

changing requirements affect the design. Part of the technical requirements are a result from the conceptual 

design work. Therefore, changes in requirements lead to cumbersome and time-consuming Validation and 

Verification (V&V) of results and uncertainty of the compliancy of the designs.  

 

The digital transformation has led to a steep increase in the adoption of automation tools. Software development 

platforms have become available that allow engineers to effectively develop new applications for design activities 

where no of-the-shelf tools fit with custom purpose-build solutions. These tools offer engineers significant reductions 

in effort and lead-time of specific tasks albeit for a limited scope and conditions. Modern-day software products offer 

engineers powerful capabilities to build hybrid workflows capable of integrating automated design and analysis tools 

with human-oriented activities. The state-of-the-art software solutions supporting the concurrent development process 

feature the following bottlenecks: 

 

• Engineering applications are volatile to changes 

Custom engineering applications are often effective within a strictly limited and known scope and often fall 

short in supporting unknown or unforeseen situations and designs. Most software development products lack 

support to effectively absorb such changes and to handle these situations and as such force engineers to 

refactor their applications. This refactoring is not only time consuming; it also requires knowledge of software 

development and a thorough and up-to-date understanding of the existing code.  

• Setup of simulation workflows is time consuming 

The setup of simulation workflows is time consuming and requires continuous adaptions of the integrated 

tools as well as of the overall architecture to support the iterative nature of the engineering design process. 

Non value-adding data reformatting activities, caused by the lack of standard interfaces and data formats, are 

often observed in practice when changes occur. Given the limited timeframe and increasing pressure engineers 

are not always able to adapt their automated workflows and are forced to revert to manually generated or 

adjusted designs. In addition, switching to higher fidelity analysis, often implies the generation of new 

workflows from scratch. 

• Scalable computing solutions require specialized knowledge 

Whereas the ‘cloudification’ and ‘servitization’ of tools and workflows is ongoing, the setup of virtual and 

cloud environments for large-scale computing jobs requires specific expertise of deployment techniques and 

infrastructures. The setup of large-scale design studies on computing infrastructures and management of the 

vast amount of generated data is not straightforward and not available as commodity to design organizations.    

 

The result is a product development process initiated on assumptions where significant time is spent on coping with 

requirement changes by performing unwanted manual (redesign) activities. These processes thereby offer limited to 

no time to explore design alternatives, limit product optimization and result in high non-recurring cost. 

2. State-of-the-Art 

Product development process in aerospace industry 

The practice for the development of high-tech solutions is nowadays often based on principles of concurrent 

engineering (illustrated in Figure 1) both within companies and along the supply chain. However, by having the 

different phases run concurrently and often distributed over multiple parties, inefficiencies are introduced. 

Assumptions need to be made since certain requirements from preceding phases or other partners are not yet clear the 

moment a design cycle starts. In many cases, those assumptions prove to be wrong, requiring costly redesign activities. 



DEFAINE - Design Exploration Framework based on AI for froNt-loaded Engineering 

     

 3 

 

Project setup

Requirements

Design

Manufacturing

Tests

Certification

Project setup

Requirements

Design

Manufacturing

Tests

Certification

Sequential product development process

1st product 
deliverystart

Se
q

u
en

ti
al

 P
D

P
 le

ad
 t

im
e

C
o

n
cu

rr
en

t 
P

D
P

 le
ad

 t
im

e

Concurrent product development process

 
Figure 1: Sequential and concurrent Product Development Process with tests and certification 

For the partners across the supply chain, a main focus within their individual product development process is to choose 

a design concept which can absorb additional requirements change during the design process, without having 

significant effect on the products’ major performance parameters. To achieve this, multiple concepts are traded and 

their robustness to requirements changes is verified. As requirements tend to change even in the detailed phase of the 

design process, the design must be flexible with respect to these changes. 

 

In the current state, engineering tools applied within the design process predominantly involve manual operations. The 

involved tools feature varied, unaligned, and document-based input/output, so data exchange is inefficient and prone 

to errors. Finally, design process steps are primarily mono-disciplinary driven. This all leads to labour intensive process 

execution culminating in unnecessary long lead-times and introducing misalignment between the tools involved. This 

creates obstacles towards enabling design space exploration and multi-disciplinary optimization and trading of design 

solutions in the early phases of design for finding the most robust and optimal design solution. 

 

Knowledge Based Engineering systems and Model Based Systems Engineering  

When the first KBE systems entered the market in the late 80s, they were based on the LISP language, were expensive 

and required specific hardware. Only large engineering companies could afford them and shorten the lead time of 

critical programs by means of powerful engineering automation solutions.  Specialized knowledge engineers were 

trained for knowledge acquisition and formalization and LISP programmers were employed to package the formalized 

knowledge into efficient design automation solutions. The high entry level of KBE, combined with the lack of an 

adequate development methodology [3] [4],  severely limited the industrial exploitation of KBE.   

 

Recently, more affordable KBE systems have largely increased the user base, including also smaller engineering 

companies. In this setting, the domain expert is often playing the simultaneous role of knowledge engineer and KBE 

developer. This often leads to less rigorous application development processes, the formal knowledge modelling step 

if often skipped, with consequences on the traceability of knowledge (black box effect), poor reusability of the 

application and problematic validation process.   

 

Methodologies like MOKA [5] and KNOMAD [6]  are available to structure the KBE development process, with 

emphasis on knowledge modelling, but, in practice, the transition between knowledge modelling and source code 

generation is not seamless, with consequences on consistency and synchronization. This is largely due to the traditional 

document-based systems engineering approach embraced by MOKA.  

 



DEFAINE - Design Exploration Framework based on AI for froNt-loaded Engineering 

     

 4 

A more efficient model-based approach as the MBSE practice proposed by INCOSE [7] is not yet present in the KBE 

domain. MBSE is defined as “the formalized application of modelling [rather than documents] to support system 

requirements, design, analysis, verification and validation activities throughout development and later life cycle 

phases”. Through the definition of a rigorous and complete System Architecture Model MBSE can ensure the 

traceability of all model elements to system and user requirements. To this purpose, SysML [8], which is a standard 

visual modelling language for MBSE, offers specific constructs for modelling, validation and verification of 

requirements. While MBSE is becoming a mainstream practice in complex engineering domains [9], its use in KBE is 

still uncommon. However, in combination with automatic code generation techniques, it has the potential to close the 

gap between knowledge model and KBE app. Model-driven development and visual programming are already trending 

in low-code development platforms like Mendix, Appian and Google App Maker. However, the quality of the code 

generated at run time can be inadequate, in terms of structure and clarity [10], to enable a potential KBE developer 

understanding and modifying it. 

 

MDAO and PIDO workflow systems 

Process Integration and Design Optimization (PIDO) tools are mainstream workflow management systems used to 

orchestrate the execution of heterogeneous and distributed sets of engineering applications (e.g. analysis and 

simulations), generally under the control of one or more optimization toolboxes. Several commercial (e.g., Optimus, 

ModelCenter, ModeFRONTIER and HEEDS) and open source platforms (e.g. openMDAO and RCE) exist, which 

mainly differ for their user interface, the provided set of optimization and design exploration tools, as well as their 

methods to display the simulation/optimization results. Except for very few, PIDO do not provide templates to define 

multidisciplinary optimization problem according to classic (or customizable) MDAO architectures [11]. The 

flexibility (and the burden) to arrange a workflow in the form of such architectures is generally left to the expert user. 

The integration of a workflow mostly takes place through manual operations involving menu selection and “drag & 

drop” operations. Some PIDO tools offer scripting functionality, thus enabling other software systems to edit or 

automate part of the workflow definition.  

 

Great advances in the use and extension of PIDO tools have recently taken place in the MDAO research-oriented 

projects IDEaliSM and AGILE. Both advocate the separation of the MDAO system formulation from its integration 

into an executable workflow. The INFORMA system (IDEaliSM) makes use of an ontology-based approach to 

automatically define complete MDAO formulations. It also provides advisory capabilities to help MDAO novices 

selecting the most convenient architecture to the problem at hand. Finally, it features a loose interface with Optimus, 

the PIDO platform by Noesis Solutions. Some concepts were taken further in AGILE, leading to KADMOS, a graph 

manipulation application able to create and manipulate complete MDAO system formulations, based on a repository 

of engineering knowledge. The neutral standard format, CMDOWS, was developed to transfer the KADMOS 

formulations to diverse PIDO platforms, which thanks to a dedicated plug-in, can instantaneously generate executable 

workflows. Other languages or grammar for MDAO problem formulation are described in literature, such as REMS 

[12]  and Ψ [13], but they do not enable the use of any third party PIDO tool. The OpenMDAO framework allows the 

user to choose some basic MDAO architecture, but contrary to all other PIDO tools, lacks any friendly user interface 

and requires programming efforts to operate.  

 

Currently there is no platform that offers dynamic workflow re-configurations, to adjust the MDAO problem 

formulation, or tool selection, “live” based on the insights gained during simulation. 

 

Data analysis and machine learning 

Big data analytics, machine learning and relative storage technologies are the main pillars of modern Artificial 

Intelligence (AI) techniques. These offer a wide set of algorithms and techniques to capture and analyze large data sets 

and data streams. 

 

Big Data is a term used to identify data sets that are very large and/or complex (i.e., unstructured or semi-structured) 

so that traditional data processing applications are inadequate to process them. Analysis on such data may reveal 

insights from the data (Analytics), but it is also possible to learn from data and extract knowledge through machine / 

deep learning algorithms, that try to solve a problem without the computer being explicitly programmed for this 

purpose, but rather learning from the experience the best way to reach the desired solution. 

 

In the last decade, a great number of tools for Data Analytics (DA) have been implemented, most of them extended 

with Machine / Deep Learning modules. State-of-the-art DA tools comprehend frameworks designed for either or both 

batch and stream processing. Among the most famous we recall Spark, Flink [14], Google Dataflow [15]  and the 

stream processing only Storm. Among state-of-the-art tools specifically implemented for Machine and Deep Learning 

(MDL) examples include Caffe [16], Theano [17], Torch [18] and TensorFlow [19]. All of them share a common 
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Tensor-based data model (multi-dimensional array) and a vision of the application as Dataflow graphs, especially when 

building neural networks. The Dataflow (DF) based model, more specifically a Directed Acyclic Graph (DAG), is used 

to represent each application. 

 

Computing infrastructure, containers and container orchestration 

Container orchestration frameworks, such as Borg and Kubernetes, allow deploying and managing distributed 

applications as a set of containers on a shared cluster of (virtual) nodes. However, cost-efficient placement of 

performance-sensitive applications requires an automated, user-friendly approach for determining optimal container 

allocation and deployment policies. Application deployers have difficulties with determining the optimal resource 

allocation policies for the containers of their applications. This is because they typically have less expertise about 

operating cloud-native applications in production environments. For example, a user study conducted by Microsoft 

[20] found that 70% of jobs submitted to a production cluster were over-provisioned. And for 20% of the jobs 10x 

more resources than necessary were allocated. 

 

There exists a wide range of techniques for determining appropriate amount of resources for individual units of work 

(e.g. application components/VMs/containers) and self-adaptive systems for dynamically adjusting the resources of 

these units horizontally or vertically. Previous work has proposed several methods based on performance modelling 

for resource allocation of web-applications. Performance models can either be constructed using queuing theory [21] 

or via various machine learning techniques such as artificial neural networks (ANN) or state vector machines (SVM) 

[22]. These approaches rely heavily on the modelling capabilities of the application developers. Others have proposed 

performance modelling methods and associated middleware for horizontal auto-scaling of VMs or containers based on 

queuing theory [23], control theory [24]  and the universal law of scalability [25]. These methods all require expertise 

in performance modelling. 

 

In parallel, performance optimization via configuration tuning has been proposed by the means of search-based 

techniques such as Hill-climbing [26] which successively samples the configuration space in search of a (near) optimal 

configuration. Similarly, black-box auto-tuning techniques have been shown effective in the selection of VM-instances 

for data-analytics [27]. The latter methods do not require the construction of an accurate performance model but 

observes the application as a black box. Thereby, they eliminate the need for expertise in modelling.  

3. The DEFAINE framework 

DEFAINE delivers a design exploration framework that enables large-scale exploration of designs, data analysis and 

machine learning capabilities to analyze the designs and flexible modelling tools to infuse the engineering applications 

and processes with new knowledge. The framework enables design and manufacturing companies in the high-tech 

industries to adopt a product development process based on front-loaded principles by utilizing the framework during 

the early stages of or even before the start of a new project. This front-loaded process significantly reduces the 

inefficiencies of the concurrent engineering approach currently applied in industry. By feeding these engineering 

workflows with multitudes of possible requirement sets, a large set of solutions is generated. The generation of these 

solutions is accelerated by providing distributed and scalable computing infrastructures. With the help of techniques 

from the field of Artificial Intelligence, the resulting design data can be analyzed to discover trends and relations as 

function of the varied requirement sets. Powered by computing infrastructure, large-scale design studies are executed 

to perform design space exploration. From the resulting solution set, previously unknown rules and constraints can be 

inferred. Using flexible tools and new modelling techniques, the inferred knowledge can be captured and directly used 

to be included in the tools and workflows. The updated analysis capabilities are in turn utilized to perform further front-

loading of the design process, providing a learning effect to the framework and eventually leading to a more efficient 

and effective generation of solutions. The general principle of this novel, “AI-enriched” front-loaded development 

process is depicted in Figure 2. 
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Figure 2: AI-augmented frontloaded design process 

This novel front-loaded development process will allow engineers to explore at least a ten-fold of design variants 

(different requirement sets, different design options) within the timeframe typically required for a single design. Based 

on the exploration of alternative design variants, it is expected that the recurring cost of the design can be reduced by 

10%. Since this also offers design teams increased flexibility in dealing with late changes in requirements, it is expected 

that this front-loaded approach will reduce the lead-time for design updates by 50%.  

 

To realise this front-loaded development process DEFAINE delivers the following high-level solutions: 

 

• A novel KBE development methodology, based on MBSE concepts and related visual languages (e.g. 

SysML), which will . help designers develop more transparent applications, faster. The engineering services, 

based on principles of Knowledge-Based Engineering (KBE), that automate part of the engineering processes 

are essential to the large-scale generation of design solutions. This methodology will bridge the knowledge 

capturing and formalization phase - including the app requirements definition - with the actual code 

development phase by allowing a visual approach to edit KBE applications, thus automatically generating 

code from graphs and code-less forms. The flexibility of the generated KBE applications will be enhanced by 

the development of a “live editor”: a new module of the ParaPy KBE system [28] to host live interactive 

sessions with KBE applications at runtime. Together, the MBSE modelling and live editing will lower the 

development time for KBE applications by 50% during the development phase and up to 90% for runtime 

editing. Also, the verification & validation process will benefit from the enhanced level of knowledge 

traceability provided by the MBSE approach.  

• A system for the automatic (re)formulation of multidisciplinary engineering workflows based on provided 

design requirements and available engineering services (i.e. analysis tools, KBE apps, workflows templates). 

DEFAINE will extend the functionalities of the KADMOS system developed in AGILE, and the INFORMA  

method developed in IDEaliSM. The proposed system will enable smart workflow configurations that (i) 

account for the required level of analysis fidelity and computation time targets; (ii) identifies gaps in the 

engineering services based on I/O output analysis and (iii) will enable dynamic workflow re-formulations, 

based on insights (e.g. low sensitivities, inactive constraints) obtained at run time. The generated formulations 

will be exported, using the CMDOWS standard exchange format . The time required to set up a simulation 

workflow is expected to be reduced by 75%, with practically zero time requried for re-formulations. 

• A scalable infrastructure for computation that supports both deployment on minimal local infrastructure and 

workstations as well as deployments on cloud platforms. The solution will use state-of-practice 

containerization technology and extend it with smart deployment and management tools that autonomously 

generate and distribute large-scale design studies. and can be operated without expert knowledge. The setup 

time required to prepare large-scale design studies is expected to be reduced by at least 80 to 90% for users 

without pre-knowledge of such computing infrastructures.  

• The exploitation of (automated) data analysis techniques and AI algorithms that can identify trends and 

relations in large sets of design data and support the inference of knowledge.  

 

The overall architecture of the solution proposed by DEFAINE is depicted in Figure 3.  
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Figure 3: DEFAINE framework architecture 

4. Technological innovations 

This section presents a subset of the developed innovations within the framework. The selection is based on whether 

the innovations are discussed in papers submitted for and presentations given during the DEFAINE session at the 

CEAS conference 2023 in Lausanne. 

 

Development of engineering services 

Most of the engineering services developed in the project are based on KBE technology, using different KBE systems 

(e.g. ParaPy, NX Knowledge Fusion, PACE lab). In general, a KBE system allows engineers to capture engineering 

logic in a high-level language and provides dedicated libraries to speed up application development, such as automated 

geometry modelling, mesh generation and integration with a (third party) CAE software. Parametric geometry models 

can be automatically generated and quickly adapted based on a changing set of input parameters to create varying 

shapes and models required for the design studies downstream in the process. 

 

To accelerate the development process of KBE applications and guarantee the synchronization between the knowledge 

models and their codification in source code, TU Delft, in close collaboration with ParaPy, has implemented an MBSE 

approach (novel in KBE domain) to model requirements, architecture and views of each engineering service based on 

the ParaPy KBE system. This approach, complemented by automatic code and documentation generation capabilities, 

accelerates development and reduces the typical black box nature of KBE applications. As additional result of these 

efforts, the entry level of KBE technology is lowered, enabling less IT specialized developers to tap into its potential.  

 

A live KBE editor is developed by ParaPy to allow users to modify the source code of KBE engineering services (i.e. 

model configurations, rules, user interface) at run-time, such to alter or include new knowledge, as emerging during 

the development of the applications and during the execution of the design studies. 

 

Configuration of workflows 

The engineering services developed with the KBE system and those services that are already available in the library of 

tools and workflows are used to configure multidisciplinary analysis workflows to simulate the behavior and 

performance of the designs. These workflows are formulated using the TU Delft KADMOS system and then stored 

using the XML-based exchange format CMDOWS developed in the AGILE project. By means of dedicated plug-ins, 

CMDOWS files containing non-executable formulations of workflows can be automatically translated into executable 

workflows using existing Process Integration and Design Optimization systems and KE-chain by KE-works. KE-chain 

allows the modelling of business processes to include the designers in the loop and trigger, under the hood, the 

KADMOS system functionalities.  

 

For the configuration of workflows, an extended version of the KADMOS system supports users with smart workflows 

setup by identifying gaps in the capabilities among the available engineering services based on I/O analysis, dynamic 

reformulation of workflows based on insights obtained during runtime and selection of tools to match required fidelity 

and computation time constraints.  
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Design space exploration 

Once the workflows are created with the workflow systems, the design exploration framework can execute these 

workflows to generate many different designs. PE Geometry has extended current generative design systems by 

connecting function-means modelling tools to geometrical modelling. The automated generation of geometrical models 

from function-means representations will allow to generate a wider range of design variants compared to the parametric 

variations that are possible today. 

 

Chalmers University has developed Club Design to manage the traceability among the often-intangible high-level 

business requirements (e.g., range, fuel consumption, production efficiency, sustainability) coming from external 

stakeholders (e.g., airlines) down to the measurable technical requirements (e.g. weight, costs, lifetime) which are 

normally the objectives that engineers at low-level suppliers work with. Engineering design and business development 

are traditionally conducted by different teams, which adopt different metrics to assess both a product’s increased 

functionality and its business potential. While business development often evaluates new products in terms of the 

financial value generated over several business scenarios, engineering design teams base their activities on meeting 

technical requirements. The consequence is that engineering teams and business teams have difficulties sharing 

accurate and unbiased assessments of what the value of new technologies and solutions is. To solve these 

communication challenges,  

4. Use cases 

The solutions provided in this project will be evaluated and demonstrated using five use cases provided by industrial 

partners.  By providing a common problem to solve, the software providers and universities collaborate and develop 

in a realistic environment where product design data can flow between partners. 

 

On-board systems architecture design 

As of today, early conceptual design for on-board system architectures at Saab (see some examples of systems in 

Figure 4) is primarily addressed with semi-empirical data, technical data of available components or with estimations 

through steady-state simulations. To improve confidence in early design, to reduce risk and provide lesser uncertainties 

on expected performance metrics, it is desirable to simplify the use of higher-fidelity systems analysis, like transient 

simulations to explore time-dependent phenomena, while still guaranteeing fast exploration of different architectures.  

 

The Saab use case focusses on two aspects regarding on-board systems modeling and assessment within aircraft 

conceptual design: 

1. Exploration of different architecture alternatives for on-board systems 

2. Automation of time-domain modeling of on-board systems. 

 

 
Figure 4: On-board systems relevant for Saab's use case. 
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Engine component 

The GKN Aero Engines use-case focuses on 2 product levels. The first is on engine system level (see Figure 5) and 

will target electric fan engines. This product is used to connect requirements on system level with requirements on 

component level, while adding more complexity to the Computer Aided Design (CAD) and analysis models. The 

second level is engine component level. Different components will be evaluated. For example, the Fan Case of an 

electric engine or a Turbine Rear Structure of a combustion engine. Most of the technology will be developed for usage 

on component level. 

 
Figure 5: Example of an aero-engine. 

Wing box structures 

The GKN Fokker Aerostructures use case covers the conceptual design of ailerons, including material trade-offs and 

sensitivity studies. An aileron (Figure 6) is a wing control surface and its structure typically consists of skin panels, 

ribs, spars, stringers and hinge brackets. It must comply with a number of requirements including design, stress and 

manufacturing constraints. Typically, a design is optimized for minimum cost and weight, while making sure that the 

structure does not fail (stress reserve factors higher than one).. Using traditional methods, time is often limited for 

detailed analysis and iterations to optimize the design, which. This leads to high project risk and/or conservative design 

concepts. 

 
Figure 6: Example of an aileron structure. 

Electrical Wiring Interconnection System 

The GKN Fokker Elmo use case focuses on the automatic generation of Electrical Wiring Interconnection Systems 

(EWIS) architecture concepts (see Figure 7 for an example). By automating these processes and using the envisioned 

DEFAINE framework the aim is to be able to quickly generate different EWIS architecture concepts which can be 

used to feed more detailed analyses and substantiate both aircraft design and EWIS design trade-offs. 
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Figure 7: an example of a channel architecture. 

 

Integral aerospace demonstrator  

The capabilities of the four aforementioned use cases are combined in an integral demonstrator. This demonstrator will 

focus on the design of a UAV and several of its systems. Within this use case, Saab AB will be in the role of OEM for 

the UAV design. Subsequently, Saab AB will perform the design of the on-board systems of the UAV, GKN Aerospace 

Aero Engines will generate an engine component design, GKN Fokker Aerostructures will design the ailerons and 

GKN Fokker Elmo will design the EWIS architecture for the UAV. Each of these individual UAV systems will have 

interrelations with each other.  

 

The systems will all need to be adjusted to each other to generate a design that meets the top-level requirements. The 

design exploration framework will support the trade-off between the requirements and solutions from the various 

subsystems by exploring what-if scenarios and alternative designs based on varying sets of requirements. In addition, 

alignment and optimization between these different systems is to be performed to ultimately obtain an optimal UAV 

design. 

5. Conclusions 

Current results within the uses cases have shown that the solutions of the DEFAINE project have significant business 

impact. The solutions can provide the following advantages to industry 

 

• Lighter, cheaper designs 

Conceptual design is a very complex process that involves a lot of uncertainty compared to a detailed design 

process. Engineers are faced with a design with limited input data that is sensitive to changes. Current business 

forces engineers to take large margins of safety to compensate for this uncertainty. While not all uncertainty 

can be taken away, sensitivity studies and design exploration via the DEFAINE framework decreases this 

uncertainty drastically. Thus, while safety margins remain for requirements that have a large sensitivity with 

respect to optimization parameters or safety, safety margins can be decreased for requirements that have less 

sensitivity to these factors. This enables more optimization of designs and thus lighter and cheaper designs. 

• Better understanding of design 

Design studies are often time consuming. Setting up new types of simulations, developing new 

methodologies, setting up workflows and executing simulations are all time-consuming tasks. This severely 

limits the analyses that can be performed. DEFAINE reduces the time and effort required to link simulations 

and create workflows, in addition to reducing computation time through large-scale deployments on cloud 

platforms. This enables companies to do more analyses and simulations, getting a more thorough 

understanding of a system design. 

• Reduced risk 

In addition to giving more insight into conventional aircraft concepts, a more accessible and thorough analysis 

of conceptual designs opens the floor to more out-of-the-box and unconventional design concepts such as new 

low-noise, low CO2 emission platforms. These concepts have a larger risk associated with them, due to these 

areas not having been explored to the same amount of detail compared to conventional concepts. The easiest 

way to solve this issue is to try to make up for this lack of exploration. The ability to thoroughly analyze these 
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new types of concepts will help in making new design concepts more viable for businesses by reducing the 

risk that they inherently come with.  

• More competitive design proposals 

Another benefit from the front-loading concept is the ability of suppliers to provide an OEM with more 

detailed, more accurate and less conservative design proposals, thus increasing their competitiveness. At the 

same time, also OEM will benefit from the increased confidence in the more mature design proposals received 

by their suppliers. 

 

The advantages mentioned above lead to significant improvement towards the business goals of the industrial partners 

within the DEFAINE consortium. Products quality improved in key aspects such as weight, cost or lead-time. Design 

efforts are reduced, leading to either a reduction in cost or refocusing of engineering effort towards more complex 

design issues and generation of out-of-the-box concepts. In addition, providing more insight into the effect of 

conceptual design choices enables the industrial partners to take more responsibility in the design, leading to an 

extension of the services that the partners can provide and hence an increase in market share and revenue.    
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